Modulation of PC12 cell viability by forskolin-induced cyclic AMP levels through ERK and JNK pathways: an implication for L-DOPA-induced cytotoxicity in nigrostriatal dopamine neurons.
نویسندگان
چکیده
The intracellular levels of cyclic AMP (cAMP) increase in response to cytotoxic concentrations of L-DOPA in PC12 cells, and forskolin that induces intracellular cAMP levels either protects PC12 cells from L-DOPA-induced cytotoxicity or enhances cytotoxicity in a concentration-dependent manner. This study investigated the effects of cAMP induced by forskolin on cell viability of PC12 cells, relevant to L-DOPA-induced cytotoxicity in Parkinson's disease therapy. The low levels of forskolin (0.01 and 0.1 μM)-induced cAMP increased dopamine biosynthesis and tyrosine hydroxylase (TH) phosphorylation, and induced transient phosphorylation of ERK1/2 within 1 h. However, at the high levels of forskolin (1.0 and 10 μM)-induced cAMP, dopamine biosynthesis and TH phosphorylation did not increase, but rapid differentiation in neurite-like formation was observed with a steady state. The high levels of forskolin-induced cAMP also induced sustained increase in ERK1/2 phosphorylation within 0.25-6 h and then led to apoptosis, which was apparently mediated by JNK1/2 and caspase-3 activation. Multiple treatment of PC12 cells with nontoxic L-DOPA (20 μM) for 4-6 days induced neurite-like formation and decreased intracellular dopamine levels by reducing TH phosphorylation. These results suggest that the low levels of forskolin-induced cAMP increased dopamine biosynthesis in cell survival via transient ERK1/2 phosphorylation. In contrast, the high levels of forskolin-induced cAMP induced differentiation via sustained ERK1/2 phosphorylation and then led to apoptosis. Taken together, the intracellular levels of cAMP play a dual role in cell survival and death through the ERK1/2 and JNK1/2 pathways in PC12 cells.
منابع مشابه
Effects of asimilobine on dopamine biosynthesis and l-DOPA-induced cytotoxicity in PC12 cells.
The effects of asimilobine, an aporphine isoquinoline alkaloid, on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells were investigated. Asimilobine at concentration ranges of 0.05-0.2 microM showed a significant inhibition of intracellular dopamine levels for 24 h in a concentration-dependent manner with an IC50 value of 0.13 microM. Asimilobine at 0.15 microM inhibited tyrosi...
متن کاملEffects of scoparone on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells.
The effects of scoparone on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells were investigated. PC12 cells treated with scoparone at concentrations of 100-200 microM showed a 128-136% increase in dopamine levels over the course of 24 hr. Scoparone significantly increased the secretion of dopamine into the culture medium. Under the same conditions, the activities of tyrosine h...
متن کاملCelecoxib, indomethacin and ibuprofen prevent 6-hydroxydopamine-induced PC12 cell death through the inhibition of NFκB and SAPK/JNK pathways
Objective(s): The possible action of nonsteroidal anti-inflammatory drugs (NSAIDs) in the reduction of reactive oxygen species (ROS) and also as anti-apoptotic agents may suggest them as putative agents for the treatment of neurodegenerative diseases. This study was designed to explore some pathways alterations induced by NSAIDs following 6-hydroxydopamine (6-OHDA)-ind...
متن کاملLiriodenine inhibits dopamine biosynthesis and L-DOPA-induced dopamine content in PC12 cells.
The inhibitory effects of liriodenine, an aporphine isoquinoline alkaloid, on dopamine biosynthesis and L-DOPA-induced dopamine content increases in PC12 cells were investigated. Treatment of PC12 cells with 5-10 microM liriodenine significantly decreased the intracellular dopamine content in a concentration-dependent manner (IC50 value, 8.4 microM). Liriodenine was not cytotoxic toward PC12 ce...
متن کاملThe neuroprotective effect of lithium in cannabinoid dependence is mediated through modulation of cyclic AMP, ERK1/2 and GSK-3β phosphorylation in cerebellar granular neurons of rat
Lithium (Li), a glycogen synthase kinase-3β (GSK-3β) inhibitor, has used to attenuate thecannabinoid-induced dependence/withdrawal signs, but molecular mechanisms related to this areunclear. Recent studies indicate the involvement of upstream extracellular signal kinase1/2 (ERK1/2)and downstream GSK-3β pathways in the development of cannabinoid-induced dependence. Thisis mediated through cannab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicological sciences : an official journal of the Society of Toxicology
دوره 128 1 شماره
صفحات -
تاریخ انتشار 2012